MPI for Biological Cybernetics

Project Building VT Facilities Publications People


The PanoLab is a wide-area high realistic projection system for interactive presentations of virtual environments. The Cognitive and Computational Psychophysics Department has employed a large screen, half- cylindrical virtual reality projection system to study human perception since 1997. Studies in a variety of areas have been carried out, including spatial cognition and the perceptual control of action. Virtual Reality technology is a perfect tool for these studies. One must, of course, take care that the simulation is as realistic as possible, including in terms of the field of view (FOV) covered. With this setup, we are able to provide visual information to almost all of the human FOV. This has the additional benefit that it allows us to systematically study the influence of specific portions of the FOV on various aspects of human perception and performance.

Towards a Natural Field of View

In 2005, we made a number of fundamental improvements to the virtual reality system. Perhaps the most noticeable change is an alteration of the screen size and geometry. This includes extending the screen horizontally (from 180 to 230 degrees) and adding a floor screen and projector. It is important to note that the projection screen curves smoothly from the wall projection to the floor projection, resulting in an overall screen geometry that can be described as a composition of a cylinder and a sphere. Vertically, the screen subtends 125 degrees (25 degree of visual angle upwards and 100 degrees downwards from the normal observation position).

Furthermore, we enhanced the image generation and projection aspects of the system. By switching from CRT projectors to DILA projectors, we were able to obtain flicker free, high resolution images. The system currently uses four JVC SX21 DILA projectors, each with a resolution of 1400x1050 pixels and a refresh rate of 60Hz. In order to compensate for the visual distortions caused by the curved projection screen as well as to achieve soft-edge blending for seamless overlap areas, we invented and developed the openWARP® technology. Finally, all virtual scenes for this system are now generated by a graphics cluster consisting of four standard PC's with high end state of the art graphics cards.




Virtual Tübingen displayed in the PanoLab


Maze projected onto the half-cylindrical screen


Max Planck Institute for Biological Cybernetics | Spemannstr. 38 | 72070 Tübingen | Germany
Phone: (49) 7071 601 601 | Fax: (49) 7071 601 616